Growing neurons on the Nanowire Superhighway

Many research groups have been working on the challenging aspects of controlling the growth of living neural networks. Of course, the ultimate hope is to eventually develop the technology to design electrical devices that will directly integrate with the human nervous system. A variety of important approaches are being considered, including surface patterning techniques used in conventional microfluidic technology ( learn more ), optical guidance from focused laser beams called “optical tweezers”–other wise known as present-day tractor beams–( learn more ), as well as various chemical coating methods like the use of novel “self-assembled monolayers” (SAMs). Here, a specialized two-ended molecule coats a surface with one end that likes to “stick” to the surface, like a silicon chip, and the other end likes to “stick” to neurons. Where ever the SAMs stick so will a neuron.

Recently at the Division of Solid State Physics at Lund University in Sweden, an advanced approach to surface patterning has been developed using electron-beam lithography to create rows of nanowires sitting on the surface of a substrate that influences the directional growth of the neuron’s axons and bundles of nerve fibers. You might imagine future neurotech device developers using this idea to pattern a silicon wafer with a specific highway map to force the exact growth of neurons in order to generate the correct network structure for a desired neuro-device’s function.

All of this pioneering work in patterning the growth of neurons into a structured network has a long road ahead. These early developments are so critical, and progress along several, competing paths are important for developing effective methods to design and create real neurotechnolgocial devices.

And, to emphasize the importance of this research, we are beginning to develop a new Neuron News Review section to cover the past, present, and future directions in living neuron network pattern techniques.

“Nanotechnology helps building a highway for nerve fibers” :: Nanowerk Spotlight :: May 13, 2009 :: [ READ ]

Share your thoughts...

Last updated October 26, 2021